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The effect exerted by the dependence between the condensation and surface-tension coefficients and the size of
an aerosol nanoparticle on its growth and critical diameter is investigated theoretically.

Investigation of the characteristic features of transfer processes in aerosol systems with nanosized particles is
of interest both for description of the atmospheric phenomena related to the formation and growth of water drops in
the atmosphere [1] and for the technological processes where nanoparticles are obtained (or used) [2].

It is well known that, when the size of a particle decreases, the processes occurring on its surface begin to
play an increasing role. As this takes place, in a number of cases an investigation of the processes in aerosol systems
with nanoparticles necessitates taking account of the specific features in the progression of these processes due to the
size effects. Thus, for example, the frequent (in phase transitions) assumption that the condensation coefficient is equal
to the evaporation coefficient can lead to qualitatively incorrect results in the case of nanoparticles.

The saturated vapor pressure over a small particle (drop) depends on its size [1]. The sticking (condensation)
and surface-tension coefficients of nanoparticles also become functions of their size [3–5]. It should be noted that
small particles can arise in a gas phase only at sufficiently high values of the saturation ratio of vapor. The condition
of the equilibrium of such particles with a gas phase is determined by the so-called critical size of a particle. In [4],
the influence exerted by the dependence between the condensation coefficient and the size of particles on their critical
diameter and growth rate was discussed, with the surface-tension coefficient being supposed constant. In the present
paper, we consider the joint effect of the condensation and surface-tension coefficients influenced by the size of aero-
sol nanoparticles on the phase transitions occurring on their surfaces.

The particle growth rate vp in vapor condensation can be written as

vp = nc
−1

 (jc − je) . (1)

We shall analyze the dependence of je and jc on the particle size. The flux density of the molecules that evaporate
from the surface of a small aerosol particle, with consideration for the Kelvin correction for the saturated vapor pres-
sure over the particle, takes the form

je = αe 
Pe

(2πmkTs)
1 ⁄ 2

 exp 










4σVm

dkTs










 . (2)

According to [6], the evaporation coefficient αe is defined as a coefficient of proportionality between the ac-
tual (measured) flux density of evaporating molecules for a flat massive sample and the greatest possible, during
evaporation into vacuum, flux density, which is equal to Pe/(2πmkTs)

1 ⁄ 2. In other words, the evaporation coefficient is
a measure of the deviation of an actual evaporation rate from the greatest possible one for a flat massive sample. With
such a definition, the evaporation coefficient is independent of the particle size (the size dependence of the evaporation
rate is taken into account by the exponential term in (2), which describes, according to the Kelvin formula, an increase
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in the saturated vapor pressure over a spherical surface). We note that if the evaporation coefficient is defined as a
coefficient of proportionality between the actual flux density of the molecules evaporating from a particle and the
quantity Pe/(2πmkTs)

1 ⁄ 2, it will increase with a decreasing particle size. The quantity Pe has the form

Pe = P0 exp 



− 

Q
kTs




 . (3)

Here, expression (2) can be written as follows:

je = αe 
P0

(2πmkTs)
1 ⁄ 2

 exp 









− 

Qeff

kTs










 , (4)

where Qeff = Q − 
4σVm

d
 is the effective energy of the evaporation of molecules from the particle which decreases with

the size of the latter.
For sufficiently small particles, the surface-tension coefficient σ also depends on their size. According to the

Tolman formula [5], this dependence has the form

σ (d) = 
σf

1 + 
4δ
d

 , (5)

where σf is the surface tension coefficient for a flat surface; δ is the so-called Tolman length. According to [5], the
variation range of δ is 0.96–3.5 A° . Further we will take that δ = 3.5 A° . Some questions connected with the influence
of the curvature of the liquid-phase surface on the equilibrium conditions in the liquid–vapor system are considered in
[7].

Paper [8] gives a correlation between the results of calculations by the Tolman formula and the results ob-
tained by computer simulation. The values of the surface-tension coefficient obtained by both methods fall sufficiently
close together (including the case of very small diameters of particles). It follows from (2) that introducing a correc-
tion for the dependence of the surface-tension coefficient on the particle size does not alter the form of the expression
for je if we use the quantity deff = d + 4δ in it instead of d and consider that σ = σf.

As was noted in [6], when the values of αe and P∞ are unknown, the flux density of evaporating molecules
can be obtained with the aid of kinetic expressions which do not include these parameters. For example, in the sim-
plest case for je we can write [9]

je = nc 




kTs

2πm





1 ⁄ 2

 exp 



− 

Q

kTs




 . (6)

Some other kinetic expressions for αe are presented in [6]. Further we shall restrict ourselves, for simplicity,
to an isothermal approximation, when the temperature of the phase-transition surface Ts can be assumed equal to the
gas temperature Tg (Ts = Tg = T). We consider the influence of the size effects on the value of jc. Under the assump-
tion of the Maxwell velocity distribution function for incident molecules, the latter quantity takes the form

jc = α 
P (0)

(2πmkT)1
 ⁄ 2

 , (7)

where P(0) is the partial vapor pressure near a particle which depends on the vapor mass transfer (through a buffer
gas) to it and on the phase-transition kinetics on its surface. Generally, the condensation coefficient α, which is de-
fined as the probability that the molecule incident on the surface will not reflect elastically back to the gas phase, de-
pends on the particle size due to the decrease in the number of particle molecules that interact with the gas molecule
incident on the particle. Here, the value of α decreases with the particle size as well [3, 4]. On the basis of the ex-
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pression for the dependence of the condensation coefficient on the particle size given in [3] and formula (5), the de-
pendence of α on the particle (drop) diameter can be presented as

α = αf exp 



− 

6σfVm

(d + 4δ) kT




 , (8)

where further, for simplicity, we suppose that αf = αe = 1.
According to (8), the condensation coefficient decreases with the particle size, as differentiated from the

evaporation coefficient (in both of the above variants of the definition of the latter). Thus, the assumption on the
equality of the condensation and evaporation coefficients in the range of nanosized particles, where the dependence of
the condensation coefficient on the particle size can be appreciable, becomes incorrect.

Based on the foregoing and [4], we can write the following expression for the resulting flux of molecules into
the particle:

I = 

P∞

(2πmkT)1
 ⁄ 2

 



exp 




− 

6σfVm

(d + 4δ) kT




 − 

1

S
 exp 





4σfVm

(d + 4δ) kT









1 + exp 



− 

6σfVm

(d + 4δ) kT




 
vd

8D

 , (9)

where

S = 
P∞
Pe

;     
vd
8D

 = 
3

4Kn
.

At I = 0, relation (9) yields the value of the critical (equilibrium) drop diameter dcr provided account is taken of the
dependence of the condensation and surface-tension coefficients on the particle (drop) size:

dcr = 
10σfVm

kT ln S
 − 4δ . (10)

Naturally, the area of applicability of (10) is limited by the values of the parameters at which the right-hand side is
higher than zero.

According to the classical Kelvin formula (where it is generally supposed that σ = σf), the critical diameter
of the particle is determined as [1]

Fig. 1. Dependence of the critical diameter of a water drop on ln S at T = 273
K, Kn >> 1: 1) α = α(d), σ = σf; 2) α = α(d), σ = σ(d); 3) Kelvin formula.
dcr, cm.
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dcr = 
4σVm

kT ln S
 . (11)

A correlation of the dependences of the critical diameter of a water drop at 273 K on the value of ln S calculated
both with the size effects taken into account and by the Kelvin formula is presented in Fig. 1. It follows from the
figure that allowance for the dependence of the condensation and surface-tension coefficients on the particle size in the
studied range of the value of S leads to higher values of the critical diameter of the particle as compared to the value
calculated by the Kelvin formula. At sufficiently small values of the parameter S, the dependence of the surface-ten-
sion coefficient on the particle size practically does not influence its critical size deduced with taking account of the
size effect for the condensation coefficient at σ = σf. When ln S = 2, the magnitude of the critical diameter is close
to its value calculated on the basis of the Kelvin formula.

We will analyze the influence of the size effects on the resulting flux of molecules into a particle (drop). Fig-
ure 2 gives the values of the dimensionless flux density of molecules I ′ = I(2πmkT)1 ⁄ 2 ⁄ P∞ as a function of the di-
ameter of a water drop at 273 K and Kn >> 1 with the dependence of the condensation and surface-tension
coefficients on the drop size taken into account and ignored. The value of the parameter S was taken equal to 7. It is
seen from Fig. 2 that, when the condensation coefficient depends on the particle size, the resulting flux of molecules
into it decreases. Here, the dependence of the surface-tension coefficient on the particle diameter in the range of suf-
ficiently small particle sizes is responsible for the rise in the value of the resulting flux of molecules into the particle
and can even result in transition from evaporation to growth of the particle.

Thus, the dependence of the condensation and surface-tension coefficients on the size of the particle influences
both its critical size and the resulting flux of vapor molecules into the particle and correspondingly the rate of its
growth. Here, for some values of the parameters, consideration of the above-mentioned size effects can lead to a
change in the sign of the resulting flux of vapor molecules into the particle.

It should be noted that the size effects related to the dependence of the condensation and surface-tension co-
efficients on the particle size can also influence the rate of homogeneous nucleation J, which can be presented in gen-
eral form as [10, 11]

J = A exp 



− 

G
kT




 , (12)

where A is the pre-exponential factor which generally is proportional to the condensation coefficient; G is the free en-

ergy of cluster formation, which in the classical theory of nucleation is expressed as G = 
1
3

 σπdcr
2 .

Fig. 2. Dependence of the dimensionless density of the resulting flux of vapor
molecules into a water drop on its diameter at T = 273 K, S = 7: 1, 2) α =
1; 3, 4) α = α(d); 1, 3) σ = σ(d); 2, 4) σ = σf. dcr, cm.
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The rate of homogeneous nucleation J is very sensitive to a change in the critical cluster diameter. For exam-
ple, [11] gives the results of calculation of the value of J for water at α = 1, T = 273 K, σ = 76.1 dyn/cm, and Pe
= 4.58 mmHg. From them, in particular, it follows that a change in the saturation ratio from 4 to 5 leading to a de-
crease in the critical diameter from 1.74⋅10−7 to 1.5⋅10−7 cm (approximately by 14%) corresponds to an increase in the
nucleation rate from 5.78⋅10−2 to 1.1⋅106 cm−3⋅sec−1 (i.e., by almost 8 orders of magnitude). A change in the critical
cluster size related to the dependence of the condensation and surface-tension coefficients on the particle (cluster) size
can also substantially influence the rate of homogeneous nucleation.

This work was partially supported by the Grant Agency of the Czech Republic, project No. 101/05/2214, and
the Belarusian Republic Basic Research Foundation, project No. T05MC–001.

NOTATION

D, diffusivity of vapor molecules; d, diameter of a particle; I, resulting flux of molecules into a particle; J,
rate of homogeneous nucleation; jc, density of a flux of vapor molecules condensing on particle surface; je, density
of a flux of molecules evaporating from a particle; k, Boltzmann constant; Kn, Knudsen number; m, mass of a vapor
molecule; nc, number density of molecules in the condensed phase; P, partial pressure of a vapor; Pe, saturated
vapor pressure over a flat surface; P0, pre-exponential factor in (3); Q, evaporation energy; S, saturation ratio; Ts,
temperature of the surface of phase transition; t, time; Vm, volume per molecule in the particle; v, rate of particle
growth; α, condensation coefficient; αe, evaporation coefficient; σ, surface-tension coefficient. Subscripts: c, conden-
sation; cr, critical; e, evaporation; eff, effective; f, flat; g, gas; m, molecule; p, particle; s, surface; ∞, infinite dis-
tance from a particle.
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